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Kinetic theory of jamming in hard-sphere startup flows
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We consider the problem of hard spheres shearing from rest with hydrodynamic lubrication, but no Brown-
ian forces. A theoretical model is presented, in terms of the aggregation of elongated clusters of particles, and
predicts a jamming transition, where stress and average cluster size tend to infinity after a finite amount of
strain. The model is compared with simulation data@Europhys. Lett.32, 535 ~1995!#, and predicts a critical
volume fraction above which jamming will occur in macroscopic systems.@S1063-651X~97!01806-0#

PACS number~s!: 47.50.1d, 83.50.2v
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I. INTRODUCTION

A canonical problem in the rheology of colloids is th
shear of a suspension of monodisperse hard spheres inte
ing hydrodynamically through a Newtonian solvent of v
cosity h0. We imagine the bulk material to be driven
simple shear by distant rheometer plates or, more elega
by Lees-Edwards boundary conditions@1# applied to an ar-
bitrarily large periodic cell. The key issue in this paper is th
for high enough volume fractions, a steady shear rate ca
be achieved. Shearing from rest, a logjam occurs at a fi
strain angle.

For our system, the deformation rate is sufficiently sm
that inertial effects are negligible, that is, a Reynolds num
defined on the particle diametera is effectively zero. Stick
boundary conditions hold at the particle surfaces. Hydro
namics provides the only interactions; there are no Brow
ian, buoyancy, or other conservative forces, and indeed e
the hard-sphere repulsion never actually affects the partic
This follows from the fact that the mobility for a pair o
lubricating spheres falls to zero at contact so that the visc
solvent alone is sufficient to prevent particle overlap. T
Péclet number Pe, defined by

Pe5
6pġh0a

3

kBT
,

whereġ is the rate of strain, is therefore formally infinite.
The problem of steady shear rate behavior has a vener

history starting with Einstein@2#, who solved the case o
infinite dilution, finding that the suspension viscosityh was
increased over that of the solvent by a factor
11(5/2)fv by the presence of hard spheres at a volu
fraction fv!1. Following many phenomenological expre
sions at intermediate volume fractions, Frankel and Acriv
@3#, assuming a cage model and lubrication interactions, p
posed an expression for the viscosity close to the maxim
packing limit fm , suggesting that it diverges close to th
point as
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h}h0~12fv /fm!21.

This result was supported theoretically by Nunan and Ke
@4#, who derived numerical results for periodic arrays
spheres, but was challenged as a result for continuo
sheared random dispersions by Marrucci and Denn@5#. They
argued that hydrodynamics could only provide a mu
weaker divergence, logarithmic in (12fv /fm), which is
unable to account for the large viscosities observed exp
mentally in hard-sphere colloids. They further pointed o
@5# that if hydrodynamics were to generate such large v
cosities it must be via the formation of extended structure
the flow.

The arguments of@3# and @5# are mentioned here as the
are both incorporated into the model presented in the n
section; a context in which they are no longer irreconcilab

Turning to computer simulations, Bossis and Brady@6#,
who approximated the hydrodynamics by a low order m
ment expansion and lubrication terms, indeed observed c
tering among the particles in two dimensions. Ball and M
rose@7,8#, who modeled the hydrodynamics by just retaini
the lubrication terms and so were able to simulate mu
larger three-dimensional~3D! systems, found that the clus
ters~defined by a criterion on the gaps! consisted of irregular
chains of particles forming along the compression axis, a
growing until they hit their own periodic images. Since th
code@8# rigorously imposed the no overlap constraint on t
spheres, these percolating clusters locked up the system
finite strain at which the stress should tend to infinity and
gaps in the cluster to zero. In practice the gaps collap
catastrophically to below machine accuracy and so the si
lations had to be stopped before the stress had grown
more than an order of magnitude.

This ‘‘hydrodynamic logjam’’ is an intrinsically many
body effect in which gaps collapse more quickly than can
accounted for by any pair theory. The structures involv
are, however, tied to the size of the simulation cell, whi
with current techniques is limited to of order 103 particles, so
that in even the largest cells the clusters are still small, co
prising no more than of order 101 particles. This leaves ope
the effect that clustering may have on a macroscopic syst
but is suggestive that at Pe5` hard spheres will not flow;
the response to an applied strain being transient and lea
to a logjam.
7203 © 1997 The American Physical Society
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In this paper we present a model of the growth and
gregation of clusters upon shearing from rest, in an atte
to clarify the concept of the jam for an infinite system. T
model provides predictions for a range of characteristics
the system, which may be tested against computer sim
tions and agree semiquantitatively for the early stages of
flow. We predict that above a lower critical volume fractio
f l50.51560.02, the logjam is not confined to small sy
tems, but occurs in macroscopic flows, being character
by the formation of an infinite cluster before a strain of
Below this volume fraction we presume, but do not sho
that steady flow may be achieved.

From the computer simulations it appears that achiev
steady flow may be facilitated by repulsive conservative
teractions between the particles@7#. These may be provided
by polymer coats, particle deformability, or Brownian forc
which from the second order Langevin equation lead t
repulsive interaction@7#. At present, the best model for th
flow of hard spheres with hydrodynamic and Browni
forces is that due to Brady@9,10#, who derives a pair theory
from a truncation of the hierarchy of integral equations
the pair distribution function. He finds a viscosity which d
verges close to maximum packing as

h}h0~12fv /fm!22, ~1!

in accordance with the standard phenomenological exp
sion as found, for example, in@11#, wherefm'0.63 at low
Pe andfm'0.71 for an ordered system at high Pe. Th
leading order divergence is due solely to the Brown
forces, one factor of 1/(12fv /fm) coming from the vanish-
ing of the short time self-diffusivity, and the other from th
divergence of the pair distribution functiong2(r ) at contact.

If this is true as claimed, for all Pe no matter how larg
then it appears that the limit Pe→` is qualitatively different
to the case of Pe5`. This receives backing from recen
work of Brady@12# also in the context of a pair theory, wh
finds that at high Pe, boundary layers form ing2(r ) in the
compression directions whenr'a. However, the pair theory
is necessarily blind to any many body instabilities such
are considered here, and there is some evidence that a h
dynamic jam of this type may be relevant to real system
finite Pe and volume fractions substantially below the r
dom close packed volume fractionfc'0.63 or thefm of
Eq. ~1!. For example, D’Haene@13# observes a suddendis-
continuousshear thickening~jump in stress! at high Pe in
controlled strain rate experiments on hard spheres abo
certain volume fraction, while Frithet al. @14# observe the
same phenomenon in controlled stress experiments. C
puter simulations@7# with conservative interparticle repu
sion at finite shear rate scaled on this force are also pron
locking up. We suggest that our model of a hydrodynam
jam represents the physical mechanism underlying these
servations. Once the jam gets under way, the stress is
mally divergent and swamps the stress@Eq. ~1!# due to con-
tinuous shear, although in the experimental systems, o
effects such as particle deformability must intervene to c
this growth.
-
pt

f
la-
e

d
.
,

g
-

a

r

s-

n

,

s
ro-
at
-

a

m-

to
c
b-
r-

er
b

II. KINETIC MODEL

The principal structures in evidence in computer simu
tions of lubricating spheres@7# are irregular chains of nearly
touching particles, which first form nearly parallel to th
‘‘compression axis’’ lying at 45° to the ‘‘flow’’ direction in
the ‘‘flow’’-‘‘gradient’’ plane.

Figure 1 shows a schematic picture of the flow in whi
particles not belonging to the clusters are omitted. Th
clusters or rods of particles, forming at the start of the tra
sient motion, are roughly parallel to one another and
simplicity we assume that all the rods which subsequen
form and grow by aggregation constitute an approximat
parallel population. It will turn out that this is a fairly con
sistent approximation as the jam occurs sufficiently quic
that any scatter in angles generated by the rotational com
nent of the flow is minimal.

The rods contain extremely small interparticle gaps a
are defined by this separation of length scales. We there
take the rod lengths to be incompressible, and for a rod
j particles, each of diametera, the length will beL' ja.
The bulk average deformation of the sample is sim

shear; that is, a velocity field given by

v5~0,0,ġx!,

where thex, y, andz axes are the ‘‘gradient,’’ ‘‘flow,’’ and
‘‘vorticity’’ directions, respectively. We make a mean fiel
approximation and imagine each rod to be embedded in
average flow, composed of the other rods, particles, and
vent. We further imagine that the rod translates and rotate
would a rigid line of zero thickness or a streak of mater
composing the mean flow. Thus its center of mass mo
with the mean velocity at that point, and the rod rotates
angular velocity

V52ġcos2u, ~2!

whereġ is the shear rate, andu is the angle the rods mak
with the gradient direction, in the flow-gradient plane.

Viewed in a frame comoving and corotating with a ro
the surrounding mean flow is seen to be extension and c
pression along nonorthogonal axes~Fig. 2!. This brings other
rods towards it, tending to produce head to head collisi

FIG. 1. Schematic picture of structures in the flow.
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55 7205KINETIC THEORY OF JAMMING IN HARD-SPHERE . . .
and a new, longer rod. This growth by aggregation allo
the large rods to rapidly increase in size and since the len
of the rods determines their effect on the system, this in t
leads to a rapid increase in the bulk stress.

If we consider two rods about to collide, of lengthsi and
j particle diameters, respectively, we find that in this me
flow approximation, they approach one another with a re
tive velocity given by

Vrel5
ġ

2
~ai1a j !cosu sinu.

In the collision we expect there to be some lateral offset.
a monomeric scale therefore, the transverse displacemen
the particles from the long axis of the rod must form a tw
dimensional random walk. This fractal arrangement will ne
essarily be generated after repeated collision events.

The transverse span of the walk forj particles will be

W}a j1/2,

and so one might expect a collision cross section for t
rods with spansW1 andW2 to be p(W11W2)

2. This is
problematical, since in the context of the aggregation eq
tion to be presented below, it leads to an ‘‘instantaneou
gelling kernel’’ @15#. It is clear, however, that this expressio
is an overestimate. The span of a walk is its maximum wi
at any point along its length; in fact, during a collision r
sulting in a longer rod, only a length of the order of th
shorter of the two rods can become entangled. Thus a m
reasonable estimate of the collision cross sectionS is

S5v1@aAmin~ i , j !#2,

wherev1 is a dimensionless constant, controlling the wid
of the walks.

If we now take the rod lengths to be approximately ad
tive on collision, we will obtain a form of Smoluchowski’
aggregation equation@16#:

dnk
dt

5(
i , j

`

SVrelC~fv!ninj~d i1 j ,k2d i ,k2d j ,k!. ~3!

Herenk is the number of rods per unit volume with leng
ka, andC(fv) is a ‘‘crowding factor’’ representing the in

FIG. 2. ~a! Mean flow field about a one dimensional rod im
mersed in a simple shear flow.~b! Same flow viewed in a frame
corotating with the rod at angular velocityV @Eq. ~2!#; as the rod
does not fully corotate with the fluid, the apparent axes of comp
sion and extension are not orthogonal.
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crease in the collision frequency due to the volume exclu
by the particles. Near the random close packed volume f
tion fc'0.63 at which the dispersion is jammed at the st
and cannot flow, one would expect the crowding factor
diverge as 1/@12(fv /fc)

1/3#. Note in Eq.~3! that the com-
binatorial factor of 1/2 normally present is canceled by t
fact that rods may collide at both ends.

We may nondimensionalize in terms ofXk5nk /n0 where
n0 is the initial concentration of particles, and the scaled ti

dT5dtS 6fv

2p D ġ cosu sinuC~fv!v1 , ~4!

wherefv5pn0a
3/6, to obtain the standard form of Smolu

chowski’s equation@15#:

dXk
dT

5
1

2(i , j
`

Ki jXiXj~d i1 j ,k2d i ,k2d j ,k!. ~5!

This has the homogeneous kernel

Ki j52~ i1 j !min~ i , j !52i j12@min~ i , j !#2. ~6!

In the notation of Van Dongen@15# this kernel has scaling
exponentsl52 andm5n51, which places it in the class
that undergoes a gel transition where the average cluster
tends to infinity after a finite amount of reduced time. V
Dongen also derives scaling solutions applying close to
gel point, and in particular, we have the divergence in
third moment of the cluster size,

M35(
j51

`

j 3Xj;~12T/Tgel!
23, ~7!

which we will show later, gives the asymptotic form of th
stress close to the hydrodynamically jammed state. It is a
important that the buildup of this divergence results fro
aggregation among the larger prevailing rods@17#; this jus-
tifies our earlier neglect, in discussing Eq.~3!, of events
where a long rod captures shorter ones without increasin
length, since the short rod population is relatively unimp
tant.

For our purposes, we will also need an explicit solution
Eq. ~5!, which will require the initial rod orientation. This is
taken to beu05p/4, being a ‘‘typical’’ angle of first colli-
sion, and the orientation for which rod growth in this mod
is fastest~so that if rod growth starts in various direction
this one is singled out by the kinetics!.

III. SOLUTION OF SMOLUCHOWSKI’S EQUATION

We approach the set of Eqs.~5! by obtaining the Taylor
series solution about the origin, for monomeric initial cond
tions @X1(T50)51#.

Van Dongen@15# provides the first term in the expansio
for each cluster size:

Xn5NnT
n211O~Tn!,

where the numbersNn are given by the recurrence relation

s-
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~n21!Nn5
1

2 (
i1 j5n

Ki jNiNj .

This is readily generalized, to provide the full Taylor expa
sion, up to a given order, for

Xn~T!5(
k
xn
[k11]Tk.

With x1
[1]51, andxa

[b]50 ;a.b, then

~k1r21!xk
[k1r ]5

1

2(a51

k21 FKa,k2a(
c50

r

xk2a
[k1r2a2c] G

2 (
c50

r21 Fxk[k1c] (
m51

r2c

Kkmxm
[ r2c] G . ~8!

This is used by first settingr50, and applying the formula
for k51,2, . . . , then proceeding tor51, etc. filling in the
matrix of coefficients in a diagonal manner.

The Taylor expansion of any desired moment is then
tained trivially.

For reasons to follow, we are interested in the third m
ment of the cluster size; a Domb-Sykes plot shows this
have an unphysical nonpolar singularity, atT'20.093, so to
obtain a solution out to the gel point, a continued fracti
expansion was derived from the Taylor series. This has
advantage of being able to reproduce subtle analytic pro
ties of the solution@18#; building branch cuts out of alterna
ing poles and zeroes radiating from the origin of the comp
T plane, and placing polar singularities, in roughly the rig
position, as the order increases.

For the kernel in Eq.~6!, pole zero plots were drawn, fo
the continued fraction expansion ofM3, using up to 50 Tay-
lor terms. A cluster of three poles was observed, which c
verged towardsT'0.33 as the order was increased, in acc
dance with Van Dongen’s scaling results. This value
somewhat less than the gel time of 0.5 for the product ke
Ki j52i j , as would be expected from the form of Eq.~6!.

IV. JAMMING AND THE BEHAVIOR OF THE STRESS

To calculate the stress, we imagine the rods to be
mersed in the mean effective fluid composed of the ot
rods, particles, and solvent. From Fig. 2, we see that in
corotating frame of a thin rod, the velocity of the backgrou
flow relative to the rod and close to it is parallel to this r
and increases linearly with distance from the center of m
Let x be this distance; then the relative speed is rea
shown to be

v5ġ~sinu!~cosu!x. ~9!

In the mean field approximation this passing fluid exert
frictional force per unit lengthdF/dx given by

dF

dx
5E~fv!ġ~sinu!~cosu!x, ~10!

whereE(fv) is a parameter for each volume fraction, wi
the dimensions of viscosity.
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From this ansatz and Eq.~8!, we readily calculate the
viscous power dissipated around a rod ofj particles, as

E
2 ja/2

ja/2

E~fv!@ ġ~sinu!~cosu!x#2dx

and therefore the stresss rod in the fluid due to the rods
~which contain at least two particles! is

s rod5
E~fv!

12
ġ~cos2u!~sin2u!S 6fv

p D (
j52

`

j 3Xj . ~11!

Since from Eq.~7! this stress will dominate at late times, th
model predicts that colloids with purely hydrodynamic inte
actions can jam up, after a finite amountg jam of strain, with
the stress diverging with the third moment of the cluster si
that is, as (g2g jam)

23 close to this point.
In this model, the condition for jamming is that the r

duced time reaches a value ofTgel50.33, before the rods
‘‘tumble’’ by reachingu50 and are no longer subject to
compressional flow field~Fig. 2!.

We expect our discussion above to apply quantitativ
close to the jamming point; unfortunately computer simu
tions are restricted to the initial phase of the flow, where
can no longer assume that the stress is dominated by l
rods. These rods, once they form, will have disrupted
local affine flow, carving out ‘‘channels’’ in the effective
fluid, in which their constituent particles may have large v
locity components in the ‘‘gradient’’ direction. In contras
the monomers, whose contribution to the stress is omi
from Eq.~11!, will by and large partake of the average affin
flow.

The monomers will dissipate a powerP given by

P5smonġ5nb^Pb&, ~12!

wherenb is the concentration of actively deforming neare
neighbor bonds, and̂Pb& is the average power dissipated b
such a bond. Initially, when the stress in the dispersion
s(0), wewill have nb5(1/2)nNNn0 wherenNN is the num-
ber of nearest neighbors per particle, and is approximately
near to random close packing.

At later times, some of the monomers have been incor
rated into rods, and so one might expect

smon'X1s~0! ~13!

so that the final expression for the stress is

s5smon1s rod, ~14!

which involves the three parametersv1 , E(fv), and
s(0), theoretical estimates of which will be given below.

It must be pointed out that the form of Eq.~13! is rather
arguable, depending upon how many gaps around and w
a rod one considers to be either no longer active in dissi
ing power, or to have been counted by Eq.~10!. Most of the
results that follow, and in particular the ‘‘lower critical vol
ume fraction’’ f l , are somewhat sensitive to the details
this equation; for example, the fitted values ofE(fv) are
most sensitive, and may vary by as much as a factor o
upon making different assumptions.
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To test Eq.~14!, computer simulations involving pure hy
drodynamic interactions were run, for several volume fr
tions and 700 particles, in an initially cubic simulation ce
using the code of Ref.@8#. The resulting stress vs strai
curves, were fitted to Eq.~14!, by choosingE(fv), and the
productC(fv)v1 for each volume fraction as shown in Fig
3~a!. The simulation results at each volume fraction a
shown dashed, and the fitted theoretical results, which
each case lie essentially on top of the simulation data,
shown as solid curves. Figure 3~b! shows the best values o
the productC(fv)v1 as a function offv , and a fit to the
form

v1

12~fv /fc!
1/3, ~15!

wherev1 is constant for allfv (v150.1360.02 fits best!.
This value ofv1 is a priori reasonable, since the step size
the random walk in particle diameters is then of ord
v1
1/2'0.35.
Since we are dealing with large scale structures in

flow, finite size effects may well be important. To test th
significance, a 1400 particle simulation was run, in an i
tially cuboidal simulation cell of aspect ratio 1:1:2—th
longer side being in the flow direction, and this geome
chosen to reduce the risk of a growing cluster hitting one
its periodic images. The results are shown alongside the
particle runs in Figs. 3 and 5, and the model is able to
them, with essentially the same values for the paramete

FIG. 3. ~a! Simulation ~dashed!, and fitted theoretical~solid!
graphs ofs againstg, at the 13 volume fractions indicated next
the curves. For this and the following figures units are chosen
thata5h0515ġ : Thus the physical stresss is in units ofh0ġ. ~b!
Fitted values of the productC(fv)v1, where the diamond is for
1400 particles. The solid line is a fit to Eq.~15! in the text.
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V. ESTIMATES OF THE MODEL PARAMETERS

So far, the values ofE(f) ands(0) have simply been
extracted from the simulation data; however, we do ha
some theoretical handle upon them. Consider first a typ
gap between nearest neighbors; this falls to zero at ran
close packing, and considering the low concentration lim
one readily sees that a reasonable estimate is

htyp'aS p

6 D 1/3F S 1

fv
D 1/32S 1fc

D 1/3G , ~16!

which vanishes as (12fv /fc)
21 nearfc .

To estimate the value ofE(fv) we follow an argument
similar to Marrucci and Denn@5#, and imagine a particle in
the effective fluid sliding along the cluster@Fig. 4~a!# with a
relative speedv @Eq. ~9!# and maintaining a distancehtyp
from it. When it separates from one of the particles in t
cluster to move to the next, the gap will change roughly
h5htyp1vt, and so the impulse along the separation dir
tion, from the instantaneous ‘‘squeeze’’ forceF, is

I5E F dt5E
t50

a/v3ph0va
2

8h
dt.

FIG. 4. ~a! Schematic picture of a particle sliding along a clus
in the flow, generating the friction parameterE(fv). ~b! Two par-
ticles in general position, with centers separated by a dista
r'a1htyp .

FIG. 5. ~a! Plot ofE(fv)h0 againstfv obtained from the fit to
the stress-strain data in Fig. 3. The circles for 700 particles and
diamond for 1400 particles show good agreement. The solid line
comparison is a theoretical prediction@Eq. ~17! in the text#. ~b!
Same fors(0)ġh0; the theoretical prediction is from Eq.~18!.
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The rate of encounter of particles in the cluster isa/v and if
we assume each particle of the rod has eight particles sli
past, and thata@htyp , then the sliding force on a lengtha of
the rod due to squeeze lubrication interactions is

Fsq58I
v
a

'3ph0av lnS a

htyp
D .

This force is logarithmic in the gap, and so one needs
include the logarithmic ‘‘shear’’ lubrication forces of th
sliding particles, which contribute

Fsh58
ph0av

2
lnS a

2htyp
D

for a lengtha of the rod. When compared with Eq.~10! this
gives, ignoring factors of order unity inside the logarithm

E~fv!'7ph0lnS a

htyp
D . ~17!

Figure 5~a! shows the fitted values ofE(fv) from the simu-
lation plotted with this theoretical prediction, and shows th
Eq. ~17! underestimates the fitted values, by a factor of ab
2. This is quite acceptable for an argument based purely
dimensional grounds, and indeed, one might expect an
derestimate on the part of Eq.~17!, since we have assume
that all gaps surrounding the rods are of sizehtyp , while in
practice, the rod will have to fight through many gaps th
are significantly smaller than this.

Next we turn tos(0), which is the stress at the mome
the simulation is started. Consider two particles, as in F
4~b!, moving with the affine flow, and separated by a po
tion vector given in polar coordinates by

r5S r sinu cosf

r sinu sinf

r cosu
D ,

Where the gradient, vorticity, and flow directions are t
x, y, andz axes, respectively, andr'a1htyp . The relative
velocity of the particles is therefore

vrel5ġr ~sinu!~cosf!ẑ.

The ‘‘squeeze’’ and ‘‘shear’’ components of this are

uvsqu5ġr sinu cosu cosf,

uvshu5ġr sin2u cosf,

and so the power dissipated in the bond will be

^Pb&5
3ph0a

2

8htyp
^vsq

2 &1
ph0a

2
^vsh

2 &,

where the angle brackets denote an average over all orie
tions with equal weight.

This leads from Eq.~12! to
g

o

t
t
n
n-

t

.
-

ta-

s~0!'
3fvnNNġ2

a3p
~a1htyp!

2Fph0a
2

40htyp
1
2ph0a

15
lnS a

2htyp
D G ,
~18!

which, as discussed shortly, diverges near random c
packing as (12fv /fc)

21.
This prediction is plotted with the actual values from t

simulation data in Fig. 5~b! and shows that the agreement
reasonable, given the crudeness of the approximations.

The derivation of Eq.~18! is essentially that due to
Frankel and Acrivos@3# who intended to predict the stead
state rheology of a concentrated dispersion. As pointed
by Marrucci and Denn@5#, the argument makes the implic
assumption that

K v2h L '
^v2&
^h&

, ~19!

wherev is the relative velocity of a pair of particles and th
average is performed over all nearest neighbor pairs in
system. This is unjustified at late times, when the velocit
and gaps will be highly correlated@5#. In our case we apply
the argument only at the start of the flow, when the gaps
prescribed by the initial configuration and Eq.~19! is a fair
approximation.

Equations ~17! and ~18! together with the reasonabl
guess thatv1

1/2'0.5, or a little less, therefore provide a sem
quantitative description of hydrodynamic jamming with n
free parameters.

Although these parameters may be predicted theoretica
the lower critical volume fractionf l derived in Sec. VII
below is obtained from a fit to simulation data, and is n
dependent on Eqs.~17! and ~18!.

VI. CLOSURE OF THE SMALLEST GAPS

Given theE(fv)’s and productsC(fv)v1 fitted to Eq.
~14!, the dynamics of the infinite system are determined a
it should be possible to calculate the distribution of gap si
as a function of straing. In practice, however, this is a dif
ficult problem as it involves taking an average over all t
possible histories of gaps lying in rods~a possibility space of
very large dimension! while the solution of Sec. III only
gives us access to the populations of different rod length
a function of strain. Instead, we are forced to make an e
mate based on a scaling argument.

We start by noting that in the model, there is a typic
longest rod length, which will scale as

Lmax5la~12T/Tgel!
22 ~20!

for some factorl, of order unity (l is likely to be system-
size dependent!. We then assert that the smallest gaps ha
always been near the center of a rod of this typical maxim
size. Such a gap,h, will be squeezed by the compressiv
forceFc in the rod, so that

ḣ52
8hFc

3ph0a
2 , ~21!

and so, using Eq.~10! we obtain an expression for the min
mum gap:
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2 lnF hmin
hmin~0!G5

l2E~fv!

9C~fv! v1h0fv
@~12T/Tgel!

2321#
Tgel
3

.

~22!

We may also~over! estimate the size of the initial minimum
gaphmin(0) ~which will be highly sample dependent! from

hmin~0!'htyp .

The model thus predicts that the smallest gap will c
lapse catastrophically, falling as exp@(g2gjam)

23# near the
gel point. It is this singular dependence which makes co
puter simulations of this regime extremely difficult. How
ever, it also has a bearing on the self-consistency of
model, for the rods are only defined by a separation of len
scales, between gaps and particle diameters. A rapid coll
of the gaps is therefore essential to this approximation.

Figure 6 shows2 lnhmin plotted against the stresss, for
simulations of 700 particles and the predicted curves su
posed at various volume fractions. A value of 2.1 was u
for l.

VII. LOWER CRITICAL VOLUME FRACTION

Our model predicts a lower volume fractionf l below
which the rods will tumble~reachingu50 andg51) before
the gel transition occurs~at T5Tgel'0.33). Since the re-
duced timeT is related to the angleu the rods make with the
gradient direction, by@Eqs.~2! and ~4!#

T5
6fv

2p
ġC~fv!v1lnS cosucosu0

D ,
with u05p/4, it follows from Eq.~15! and the fitted value
of v1 that f l50.51560.015. It should be noted, howeve
that the error onf l is only in the context of the precis
model presented here; its value is quite sensitive to the
tailed assumptions made about, e.g., the form of the st
@Eq. ~13!#.

FIG. 6. Simulation, and theoretical curves of2 ln(hmina) against
sh0ġ, for variousfv with l52.1. The open symbols show fitte
theoretical results@Eq. ~22!#, and the closed symbols of the sam
shape are the simulation data at the same volume fraction.
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We suggest that this concept of a lower critical volum
fractionf l may be of relevance to sudden shear thicken
in real colloids, with finite values of Pe´clet number. D’Haene
@13#, for example, finds that in controlled strain rate expe
ments on hard-sphere systems, there is a discontinuous
in stress as a function of Pe, but only above a volume fr
tion of 53–54 %. In the context of our model, this wou
correspond to the onset of a jammed state, with the forma
of system spanning clusters leading to the irregular str
fluctuations he observes after the discontinuous thicken
Since the stress he observes does not grow arbitrarily,
consequences of this putative logjam must be mitigated
his experiments by some other effect such as particle de
mation or fracture.

VIII. CLUSTERS IN THE SIMULATION

The computer simulations contain all the informatio
about the flow, and so can be used to visualize, and perf
statistics on any structures that may be present. In orde
define a cluster, we choose a criterion based upon inter
ticle gaps, which is that two particles belong to the sa
cluster if they are separated by a gaph less than some critica
gaphc , for which we take a ‘‘theory-driven’’ value. In the
context of this theory, we choose forhc a value dependen
upon the expected gaphd in a dimer forming at the start o
the flow. This is predicted to collapse like

hd5htypexpF2E~fv!

3ph0
lnS cos~p/4!

cosu D G , ~23!

in which the time dependence enters throughu, and we take

hc5
hd
b
, ~24!

whereb is some parameter of order unity.
A simulation was run atfv50.53, using 700 particles an

E(fv)5125, and the configurations partitioned into cluste
on the basis of Eq.~23!. From these partitions we may defin
moments of the cluster sizes: LetPj be the fraction of par-
ticles belonging to clusters of sizej particles, then we define
theqth momentMq by

Mq5(
j51

`

Pj j q.

Figure 7 shows plots ofM2 andM3, averaged over vari-
ous strain intervals, as a function of strain,g for five values
of b. The error bars show the predicted values, us
v150.1360.02.

Lastly, in order to obtain some pictorial impression
these clusters, six configurations equally spaced in st
were chosen from this simulation atfv50.53 usingb53.
The clusters in the flow were then analyzed by finding
each the ‘‘radius of gyration’’ tensorR. This is defined in
the following manner: Letk label each of theN particles
belonging to the cluster in turn. Letr k be the position vector
of the kth particle and
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r c.m.5(
k
r k /N

the center of mass of the cluster. Then

R5(
k

~r k2r c.m.!~r k2r c.m.!

N
.

This tensor defines an ellipsoid approximating the cluste
true distribution in space. To project this ellipsoid onto t
flow-gradient plane, let thex, y, and z axes be the flow,
gradient, and vorticity directions, then define a new 2 by
tensorRP , by the upper left hand corner ofR. The projec-
tion onto the planez50 is then the set of points$x% given by

x5RP
1/2n̂, ~25!

where n̂ is a vector lying on the unit circle in the plan
z50.

These projections are plotted for the chosen configu
tions in Fig. 8, and clearly show narrow ‘‘rods’’ near th
‘‘compression’’ axis (u5p/4). However, since Fig. 8 sup
presses all information about the ‘‘vorticity’’ direction, on
may wonder how good is the approximation that the rods
confined to thez50 plane. This was tested, by calculatin
the average value, and standard deviation of the vector
resenting the principal axis of each ellipsoid. We find th
this vector has a component in the vorticity direction with

FIG. 7. ~a! Plot of M2 against straing for the five valuesb
5 2.6, 3.0, 3.5, 4.0, 4.5. Each point in strain is actually an aver
over four equally spaced configurations in one of the six str
ranges, g5020.04, 0.0420.08, 0.0820.12, 0.1220.16,
0.1620.20, and 0.2020.24. The six error bars show the predict
values of the momentM2, for each strain range, usin
v150.1360.02. ~b! Same forM3.
’s

2

-

re

p-
t

mean of less than 0.02 particle diameters, and a stan
deviation increasing from 0.10a at g50.08 to 0.22a at
g50.24, entirely consistent with the clusters lying in th
flow-gradient plane.

IX. CONCLUSION

In this paper we have constructed a model of the str
carrying ‘‘fabric’’ in a concentrated dispersion of har
spheres at Pe5`. The model predicts that above a low
volume fractionf l substantially less than 0.63, a hydrod
namic logjam occurs even in an infinite system. This is ch
acterized by an elongated cluster or rod, first forming para
to the compression axis, growing to infinite size before
tumbles by passingu50 and entering a region of extension
flow. The model quantifies the hitherto qualitative notion
hydrodynamic clustering and jamming, which we believe
be a new physical phenomenon underlying discontinu
shear thickening.

At volume fractions belowf l , the clusters in the mode
will tumble, passingu50 and failing to jam at a ‘‘first at-
tempt.’’ The assumption that all clusters in the flow rema
roughly parallel will then break down, as it is closely tied
the transience of the motion. Whether a steady state is
eventually achieved is not covered by our model and rema
an open question. It is therefore unclear whether for a p
hydrodynamic model a divergence such as Eq.~1! can be
studied belowf l .
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FIG. 8. Plots of projections of the ellipsoids from Eq.~25! for
all the clusters in a configuration. Tick marks on the axes are
spacing of one particle diameter. Configurations are at~a!–~f!
g50.04, 0.08, 0.12, 0.16, 0.20, and 0.24.
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