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Kinetic theory of jamming in hard-sphere startup flows
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We consider the problem of hard spheres shearing from rest with hydrodynamic lubrication, but no Brown-
ian forces. A theoretical model is presented, in terms of the aggregation of elongated clusters of particles, and
predicts a jamming transition, where stress and average cluster size tend to infinity after a finite amount of
strain. The model is compared with simulation dgarophys. Lett32, 535(1995], and predicts a critical
volume fraction above which jamming will occur in macroscopic systé®%063-651X97)01806-0

PACS numbdp): 47.50+d, 83.50-v

I. INTRODUCTION e no(1— b, [ dm) L.

A canonical problem in the rheology of colloids is the This result was supported theoretically by Nunan and Keller
shear of a suspension of monodisperse hard spheres interat], who derived numerical results for periodic arrays of
ing hydrodynamically through a Newtonian solvent of vis- spheres, but was challenged as a result for continuously
cosity 7. We imagine the bulk material to be driven in sheared random dispersions by Marrucci and D&inThey
simple shear by distant rheometer plates or, more eleganthargued that hydrodynamics could only provide a much
by Lees-Edwards boundary conditioff§ applied to an ar- weaker divergence, logarithmic in €1, /¢,), which is
bitrarily large periodic cell. The key issue in this paper is thatunable to account for the large viscosities observed experi-
for high enough volume fractions, a steady shear rate cann@tentally in hard-sphere colloids. They further pointed out
be achieved. Shearing from rest, a logjam occurs at a finit5] that if hydrodynamics were to generate such large vis-
strain angle. cosities it must be via the formation of extended structures in

For our system, the deformation rate is sufficiently smallthe flow.
that inertial effects are negligible, that is, a Reynolds number The arguments df3] and[5] are mentioned here as they
defined on the particle diametaris effectively zero. Stick are both incorporated into the model presented in the next
boundary conditions hold at the particle surfaces. Hydrodysection; a context in which they are no longer irreconcilable.
namics provides the only interactions; there are no Brown- Turning to computer simulations, Bossis and Braéy,
ian, buoyancy, or other conservative forces, and indeed evemho approximated the hydrodynamics by a low order mo-
the hard-sphere repulsion never actually affects the particlesnent expansion and lubrication terms, indeed observed clus-
This follows from the fact that the mobility for a pair of tering among the particles in two dimensions. Ball and Mel-
lubricating spheres falls to zero at contact so that the viscousse[7,8], who modeled the hydrodynamics by just retaining
solvent alone is sufficient to prevent particle overlap. Thethe lubrication terms and so were able to simulate much

Peclet number Pe, defined by larger three-dimensiondBD) systems, found that the clus-
) 5 ters(defined by a criterion on the ggp=onsisted of irregular
Pe— 67ynoa chains of particles forming along the compression axis, and
kgT growing until they hit their own periodic images. Since the

) code[8] rigorously imposed the no overlap constraint on the
wherey is the rate of strain, is therefore formally infinite.  spheres, these percolating clusters locked up the system at a
The problem of steady shear rate behavior has a venerablmite strain at which the stress should tend to infinity and the
history starting with Einsteij2], who solved the case of gaps in the cluster to zero. In practice the gaps collapsed
infinite dilution, finding that the suspension viscosifywas  catastrophically to below machine accuracy and so the simu-
increased over that of the solvent by a factor oflations had to be stopped before the stress had grown by
1+(5/2)¢, by the presence of hard spheres at a volumenore than an order of magnitude.
fraction ¢,<1. Following many phenomenological expres- This “hydrodynamic logjam” is an intrinsically many
sions at intermediate volume fractions, Frankel and Acrivosody effect in which gaps collapse more quickly than can be
[3], assuming a cage model and lubrication interactions, proaccounted for by any pair theory. The structures involved
posed an expression for the viscosity close to the maximurare, however, tied to the size of the simulation cell, which
packing limit ¢,,, suggesting that it diverges close to this with current techniques is limited to of order®larticles, so
point as that in even the largest cells the clusters are still small, com-
prising no more than of order i@articles. This leaves open
the effect that clustering may have on a macroscopic system,

*Electronic address: rsf10@phy.cam.ac.uk but is suggestive that at Pec hard spheres will not flow;
"Electronic address: jrm23@phy.cam.ac.uk the response to an applied strain being transient and leading
*Electronic address: rcb1@phy.cam.ac.uk to a logjam.
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In this paper we present a model of the growth and ag-
gregation of clusters upon shearing from rest, in an attempt ﬁ
to clarify the concept of the jam for an infinite system. The
model provides predictions for a range of characteristics of
the system, which may be tested against computer simula-
tions and agree semiquantitatively for the early stages of the
flow. We predict that above a lower critical volume fraction
¢,=0.515-0.02, the logjam is not confined to small sys-
tems, but occurs in macroscopic flows, being characterized (o J 4/
by the formation of an infinite cluster before a strain of 1.

Below this volume fraction we presume, but do not show,

that steady flow may be achieved.

From the computer simulations it appears that achieving 2)
steady flow may be facilitated by repulsive conservative in-
teractions between the particlgg. These may be provided
by polymer coats, particle deformability, or Brownian forces
which from the second order Langevin equation lead to a
repulsive interactio7]. At. present, the be;t model for the Il. KINETIC MODEL
flow of hard spheres with hydrodynamic and Brownian
forces is that due to Brady,10], who derives a pair theory The principal structures in evidence in computer simula-
from a truncation of the hierarchy of integral equations fortions of lubricating spherel¥’] are irregular chains of nearly

the pair distribution function. He finds a viscosity which di- touching particles, which first form nearly parallel to the
verges close to maximum packing as “Compl’eSSIon axis” |y|ng at 45° to the “flow” direction in

the “flow”-“gradient” plane.
Figure 1 shows a schematic picture of the flow in which
7% no(1— by [ ) 2, (1) particles not belonging to the cI_usters are omitted. These
clusters or rods of particles, forming at the start of the tran-
sient motion, are roughly parallel to one another and for

in accordance with the standard phenomenological expre implicity we assume that all the rods which subsequently

. B orm and grow by aggregation constitute an approximately
;'On az fouiué, ;(irfexample,d[rll]d whetre¢m:(r)].-6i aFE IOV_\ll_h. parallel population. It will turn out that this is a fairly con-
Ie(; d?r?g g{:)r?(;er' divec;rg:r?cgriserguesﬁlzrlg ?o tlk?e Breawni;f'iStent approximation as the jam occurs sufficiently quickly

. : hat any scatter in angles generated by the rotational compo-
forces, one factor of 1/(% ¢,/ ¢,,) coming from the vanish- y ges g y P

) . v rm nent of the flow is minimal.

ng of the short time 'Sel.f-dI.foS.IVIIy, anq the other from the The rods contain extremely small interparticle gaps and

divergence of the pair distribution functi@(r) at contact. 50 yefined by this separation of length scales. We therefore
I t_h|s IS true as cla|m.ed., for al! Pe no matter h_OW large. take the rod lengths to be incompressible, and for a rod of

then it appears that the Ilmlt Peoo is qual|ta_t|vely different i particles, each of diameter, the length will beL~ja.

to the case of Pex. This receives backing from recent * "nq ik average deformation of the sample is simple

vyork of Brady[lz] also in the context of a pair thec_)ry, who shear: that is, a velocity field given by

finds that at high Pe, boundary layers formgg(r) in the

compression directions wher=a. However, the pair theory v=(0,0,'yx),

is necessarily blind to any many body instabilities such as

are considered here, and there is some evidence that a hydwhere thex, y, andz axes are the “gradient,” “flow,” and

dynamic jam of this type may be relevant to real systems atvorticity” directions, respectively. We make a mean field

finite Pe and volume fractions substantially below the ran-approximation and imagine each rod to be embedded in this

dom close packed volume fractiop.~0.63 or the¢,, of  average flow, composed of the other rods, particles, and sol-

Eq. (1). For example, D'Haengl3] observes a suddettis-  vent. We further imagine that the rod translates and rotates as

continuousshear thickeningjump in stress at high Pe in  would a rigid line of zero thickness or a streak of material

controlled strain rate experiments on hard spheres above @®mposing the mean flow. Thus its center of mass moves

certain volume fraction, while Fritlet al. [14] observe the with the mean velocity at that point, and the rod rotates at

same phenomenon in controlled stress experiments. Conangular velocity

puter simulationd7] with conservative interparticle repul- _

sion at finite shear rate scaled on this force are also prone to Q=—ycos9, 2

locking up. We suggest that our model of a hydrodynamic )

jam represents the physical mechanism underlying these olvhere y is the shear rate, ané is the angle the rods make

servations. Once the jam gets under way, the stress is fowith the gradient direction, in the flow-gradient plane.

mally divergent and swamps the str¢Es). (1)] due to con- Viewed in a frame comoving and corotating with a rod,

tinuous shear, although in the experimental systems, othéhe surrounding mean flow is seen to be extension and com-

effects such as particle deformability must intervene to curlpression along nonorthogonal ax&sg. 2). This brings other

this growth. rods towards it, tending to produce head to head collisions

Z/

FIG. 1. Schematic picture of structures in the flow.
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- Y, crease in the collision frequency due to the volume excluded
\/ by the particles. Near the random close packed volume frac-
\/ tion ¢.~0.63 at which the dispersion is jammed at the start
and cannot flow, one would expect the crowding factor to

( diverge as T — (¢, /¢.)*]. Note in Eq.(3) that the com-
binatorial factor of 1/2 normally present is canceled by the

fact that rods may collide at both ends.
/\ We may nondimensionalize in terms X{=n,/ny where
~

—_———

<—(—a)— (b) Ny is the initial concentration of particles, and the scaled time
: . _ ¢>u -
FIG. 2. (8 Mean flow field about a one dimensional rod im- dT=dt vy cos sSinC(¢,)wq, 4

mersed in a simple shear flokb) Same flow viewed in a frame
corotating with the rod at angular velocify [Eqg. (2)]; as the rod
does not fully corotate with the fluid, the apparent axes of compres-
sion and extension are not orthogonal.

where ¢, = 7nya®/6, to obtain the standard form of Smolu-
chowski's equatiof15]:

and a new, longer rod. This growth by aggregation allows d X

the large rods to rapidly increase in size and since the length a7 ,2 KijXiXj(i+j k= 0k~ 8- (5)
of the rods determines their effect on the system, this in turn
leads to a rapid increase in the bulk stress. This has the homogeneous kernel

If we consider two rods about to collide, of lengthand
j particle diameters, respectively, we find that in this mean Kij=2(i+j)min(i,j) = 2ij +2[min(i,j)]% (6)
flow approximation, they approach one another with a rela-
tive velocity given by In the notation of Van DongefiL5] this kernel has scaling

exponentsh =2 andu=v=1, which places it in the class
that undergoes a gel transition where the average cluster size
tends to infinity after a finite amount of reduced time. Van
Dongen also derives scaling solutions applying close to this
In the collision we expect there to be some lateral offset. Oyel point, and in particular, we have the divergence in the
a monomeric scale therefore, the transverse displacements @fird moment of the cluster size,
the particles from the long axis of the rod must form a two
dimensional random walk. This fractal arrangement will nec-
essarily be generated after repeated collision events. M= E IPXj~(1=TITge) ™ s, (7

The transverse span of the walk fpparticles will be

Vre|=%(ai +aj)cosd sind.

Weajt?, which we will show later, gives the asymptotic form of the
stress close to the hydrodynamically jammed state. It is also

and so one might expect a collision cross section for twdmportant that the buildup of this divergence results from
rods with spansw,; and W, to be =(W,+W,)2. This is  aggregation among the larger prevailing r¢dg]; this jus-
problematical, since in the context of the aggregation equatifies our earlier neglect, in discussing E@), of events
tion to be presented below, it leads to an “instantaneouslyvhere a long rod captures shorter ones without increasing in
gelling kernel”’[15]. It is clear, however, that this expression length, since the short rod population is relatively unimpor-
is an overestimate. The span of a walk is its maximum widthtant.
at any point along its length; in fact, during a collision re-  For our purposes, we will also need an explicit solution to
sulting in a longer rod, only a length of the order of the Eq. (5), which will require the initial rod orientation. This is
shorter of the two rods can become entangled. Thus a moraken to bef,= w/4, being a “typical” angle of first colli-

reasonable estimate of the collision cross sectiois sion, and the orientation for which rod growth in this model
is fastest(so that if rod growth starts in various directions,
S =w [aymin(i,j)]?, this one is singled out by the kinetjcs

wherew, is a dimensionless constant, controlling the width
of the walks.

If we now take the rod lengths to be approximately addi- We approach the set of Eq&) by obtaining the Taylor
tive on collision, we will obtain a form of Smoluchowski's series solution about the origin, for monomeric initial condi-
aggregation equatiofi6]: tions[X,(T=0)=1].

Van Donger 15] provides the first term in the expansion
for each cluster size:

Ill. SOLUTION OF SMOLUCHOWSKI'S EQUATION

dnk
—Z SVieC(IMN (B4 = B 0. ()
! Xn=N,T""1+0(T",

Here n, is the number of rods per unit volume with length

ka, andC(¢,) is a “crowding factor” representing the in- where the numberhl,, are given by the recurrence relation:
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From this ansatz and Ed8), we readily calculate the

(n— 1)Nn:§i+]2:n KiiNiN;j . viscous power dissipated around a rodj gfarticles, as

jal2
This is readily generalized, to provide the full Taylor expan- f’a E(,)[ ¥(sing)(cosd)x]2dx
sion, up to a given order, for —jar2

and therefore the stress,,q in the fluid due to the rods

Xn(T):zk: xLHTE (which contain at least two particles
I [b] E(¢,). L, (66w .
With X3 1, andxa 0 Va>b, then T rod= 5 y(c0§0)(8|n26) — Z J3xj_ (11)
1k—1 r -
(k+r—1)xf<! =§E Ka,k_azo Xkaar_a_C]} Since from Eq(7) this stress will dominate at late times, the
- &

model predicts that colloids with purely hydrodynamic inter-
actions can jam up, after a finite amoupf;, of strain, with
x> K xUell (8  the stress diverging with the third moment of the cluster size,
k kmXm > . '
m=1 that is, as ¢— yjam)*3 close to this point.
In this model, the condition for jamming is that the re-
duced time reaches a value of.=0.33, before the rods

Ig;tl:.: é;‘zcl:(.)éff";reler}]rt]spgoged?gmc?ng? r:n;nr?(ta? filing in the .y mpje” by reaching #=0 and are no longer subject to a
X Ici ! 1ag : compressional flow fieldFig. 2).

The Taylor expansion of any desired moment is then ob- We expect our discussion above to apply quantitatively

taIrI]:?)? :g\elllsgz.s to follow, we are interested in the third mo—Close {o the jamming point; unfortunately computer simula-
o . tions are restricted to the initial phase of the flow, where we
ment of the cluster size; a Domb-Sykes plot shows this ta

h hvsical lar sinqularity Tat — 0.093. So t can no longer assume that the stress is dominated by large
ave an unphysical nonpoiar singuiartty, -093, 5010 1545 These rods, once they form, will have disrupted the
obtain a solution out to the gel point, a continued fraction

xpansion was derived from the Tavior series. This h thlocal affine flow, carving out “channels” in the effective
€xpansion was derived 1ro € 'aylor series. 1his has ﬁuid, in which their constituent particles may have large ve-
advantage of being able to reproduce subtle analytic propey

. ) A ocity components in the “gradient” direction. In contrast
fues of the solutiori18]; bu_|ld|ng branch cuts out of alternat- the monomers, whose contribution to the stress is omitted

T plane, and placing polar singularities, in roughly the righ'zilrgvrc Eq.(1D), will by and large partake of the average affine
position, as the order increases. . —— .

For the kernel in Eq(6), pole zero plots were drawn, for The monomers will dissipate a powergiven by
the continued fraction expansion bf;, using up to 50 Tay- p— =l P 12
lor terms. A cluster of three poles was observed, which con- moriy = Mo(Pb), (12)

verged toward3 ~0.33 as the order was increased, in accor\yheren, is the concentration of actively deforming nearest

somewhat less than the gel time of 0.5 for the product kernedych a bond. Initially, when the stress in the dispersion is

r—1

-2

c=0

r—c

This is used by first setting=0, and applying the formula,

Kij=2ij, as would be expected from the form of E@). a(0), wewill have n,=(1/2)ryyno Where vy is the num-
ber of nearest neighbors per particle, and is approximately 10
IV. JAMMING AND THE BEHAVIOR OF THE STRESS near to random close packing.

At later times, some of the monomers have been incorpo-

To calculate the stress, we imagine the rods to be 'm'Fated into rods, and so one might expect

mersed in the mean effective fluid composed of the othe
rods, particles, and solvent. From Fig. 2, we see that in the o~ X10(0) (13)
corotating frame of a thin rod, the velocity of the background

flow relative to the rod and close to it is parallel to this rod so that the final expression for the stress is

and increases linearly with distance from the center of mass.

Let x be this distance; then the relative speed is readily 0= Omont Trod; (14

shown to be ] .
which involves the three parameters,, E(¢,), and

v = y(sind)(cosH)X. (99  0(0), theoretical estimates of which will be given below.
It must be pointed out that the form of E@LJ) is rather
In the mean field approximation this passing fluid exerts sarguable, depending upon how many gaps around and within

frictional force per unit lengtld F/dx given by a rod one considers to be either no longer active in dissipat-
ing power, or to have been counted by Ef0). Most of the
dF S results that follow, and in particular the “lower critical vol-
dx ~ E(#) y(sind)(cosh)x, (10 yme fraction” ¢, are somewhat sensitive to the details of

this equation; for example, the fitted values Bf¢,) are
whereE(¢,) is a parameter for each volume fraction, with most sensitive, and may vary by as much as a factor of 2
the dimensions of viscosity. upon making different assumptions.
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FIG. 4. (a) Schematic picture of a particle sliding along a cluster
in the flow, generating the friction parametg¢¢,). (b) Two par-
ticles in general position, with centers separated by a distance
r~a+hy,.

V. ESTIMATES OF THE MODEL PARAMETERS

So far, the values 0E(¢) and o(0) have simply been

] extracted from the simulation data; however, we do have
some theoretical handle upon them. Consider first a typical
gap between nearest neighbors; this falls to zero at random

0.45 0.50 0.55 close packing, and considering the low concentration limit,
9, one readily sees that a reasonable estimate is
FIG. 3. (a) Simulation (dashed, and fitted theoretica(solid) a\ Y1)\ 1\¥3
graphs ofo againsty, at the 13 volume fractions indicated next to htyp”a 6 97 - ¢T ) (16)
v Cc

the curves. For this and the following figures units are chosen so
thata= 7,=1=17: Thus the physical stressis in units of7,7y. (b)
Fitted values of the produd(¢,)w,, where the diamond is for
1400 particles. The solid line is a fit to EQL5) in the text.

which vanishes as (2 ¢,/¢.) ! near .

To estimate the value dE(¢,) we follow an argument
similar to Marrucci and Denf5], and imagine a patrticle in
the effective fluid sliding along the clustfFig. 4@] with a
relative speed [Eq. (9)] and maintaining a distance,
from it. When it separates from one of the particles in the
cluster to move to the next, the gap will change roughly as
h=hy,+vt, and so the impulse along the separation direc-
tion, from the instantaneous “squeeze” forEe is

To test Eq.(14), computer simulations involving pure hy-
drodynamic interactions were run, for several volume frac
tions and 700 particles, in an initially cubic simulation cell,
using the code of Ref[8]. The resulting stress vs strain
curves, were fitted to Eq14), by choosingE(¢,), and the
productC(¢,) w4 for each volume fraction as shown in Fig.
3(a). The simulation results at each volume fraction are alo 3y a2
shown dashed, and the fitted theoretical results, which in I:f F dt:f STHYE 4t
each case lie essentially on top of the simulation data, are t=0 8h
shown as solid curves. Figuréh3 shows the best values of
the productC(¢,)w, as a function ofg,, and a fit to the

200 : . 20

form
@ 3 )
w; 150 + o o1 15F 1

T (6, 190™ (19 E o0
where w, is constant for allg, (w;=0.13+0.02 fits best & 1950 e TR0 80 |
This value ofw, is a priori reasonable, since the step size of / 5§ 0 O
the random walk in particle diameters is then of order 50 L , 57
w3?~0.35.

Since we are dealing with large scale structures in the

flow, finite size effects may well be important. To test their T %45 om0 os5
significance, a 1400 particle simulation was run, in an ini- 0, 9,

tially cuboidal simulation cell of aspect ratio 1:1:2—the

longer side being in the flow direction, and this geometry FiG. 5. (3 Plot of E(,) 7, againste, obtained from the fit to
chosen to reduce the risk of a growing cluster hitting one othe stress-strain data in Fig. 3. The circles for 700 particles and the
its periodic images. The results are shown alongside the 708amond for 1400 particles show good agreement. The solid line for
particle runs in Figs. 3 and 5, and the model is able to fiicomparison is a theoretical predicti¢iq. (17) in the texi. (b)
them, with essentially the same values for the parameters. Same fora(0)y7,; the theoretical prediction is from E¢L8).
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The rate of encounter of particles in the clusteafs and if 3¢, vy

we assume each particle of the rod has eight particles sliding-(0)~ ——=—— (a+ Niyp)
past, and thaa> hy,, then the sliding force on a lengéhof am

the rod due to squeeze lubrication interactions is

2
T Mo 2mnpd
ol T7o n 770
4Ohtyp 15

a

In
2hyy,
(18

which, as discussed shortly, diverges near random close
packing as (* ¢, /¢e) L.

This prediction is plotted with the actual values from the
simulation data in Fig. ®) and shows that the agreement is
This force is logarithmic in the gap, and so one needs taeasonable, given the crudeness of the approximations.
include the logarithmic “shear” lubrication forces of the = The derivation of Eq.(18) is essentially that due to
sliding particles, which contribute Frankel and Acrivog3] who intended to predict the steady

state rheology of a concentrated dispersion. As pointed out

F SIU 3 | ( 8
=87—-~3mnav In|—
sq a 7o htyp

T Nodv a by Marrucci and Denii5], the argument makes the implicit
Fshn=8—5—1In 2hyp assumption that
. . v2\ (v?)
for a lengtha of the rod. When compared with EQLO) this <_> ~ L (19)
gives, ignoring factors of order unity inside the logarithm, h (h)

a wherev is the relative velocity of a pair of particles and the
E(¢U)~777770|n(h_)_ (170  average is performed over all nearest neighbor pairs in the
typ system. This is unjustified at late times, when the velocities
. , , and gaps will be highly correlatd®]. In our case we apply
Figure 5a) shows the fitted values &(,) from the simu- 6 argument only at the start of the flow, when the gaps are
lation plotted with this theoretical prediction, and shows that, oscribed by the initial configuration and EQ9) is a fair
Eqg. (17) underestimates the fitted values, by a factor of aboulgpproximation.
2. This is quite acceptable for an argument based purely on Equations (17) and (18) together with the reasonable
dimensional grounds, and indeed, one might expect an ”rb'uess thaty /2

d ; h fE . h d 1~0.5, or a little less, therefore provide a semi-
erestimate on the part o GL7), since we have assume guantitative description of hydrodynamic jamming with no
that all gaps surrounding the rods are of sigg, while in

. h d will h fiaht th h h free parameters.
practice, the rod will have to fight through many gaps that Although these parameters may be predicted theoretically,

areNS|gn|f|cantIy smager thﬁ‘.n;h's'h h the lower critical volume fractionp, derived in Sec. VII
ext we turn too(0), whic Is the stress at the moment oy s obtained from a fit to simulation data, and is not
the simulation is started. Consider two particles, as in F'gdependent on Eq$17) and (18)

4(b), moving with the affine flow, and separated by a posi-
tion vector given in polar coordinates by V1. CLOSURE OF THE SMALLEST GAPS
r sing cosp Given theE(¢,)’s and productC(¢,)w, fitted to Eq.
r=| r sind sing | (14), the dynamics of the infinite system are determined and

it should be possible to calculate the distribution of gap sizes
as a function of strairy. In practice, however, this is a dif-
ficult problem as it involves taking an average over all the
possible histories of gaps lying in ro@s possibility space of
very large dimensionwhile the solution of Sec. Ill only
gives us access to the populations of different rod lengths as
a function of strain. Instead, we are forced to make an esti-

r cosy

Where the gradient, vorticity, and flow directions are the
X, Yy, andz axes, respectively, and~a+h,. The relative
velocity of the particles is therefore

Viel= 7 (sin0) (cosp)Z. mate based on a scaling argument.
. We start by noting that in the model, there is a typical
The “squeeze” and “shear” components of this are longest rod length, which will scale as
lvd=7r sing cosd cosp, Lmax=Aa(1=T/Tge) 2 (20)
. 2 for some factor\, of order unity { is likely to be system-
lusif=yr sin'g cosp, size dependehtWe then assert that the smallest gaps have
o ) ) always been near the center of a rod of this typical maximum
and so the power dissipated in the bond will be size. Such a gaph, will be squeezed by the compressive
2 force F. in the rod, so that
3mnea, , TN ,
(Pp)= S R 8hF
8Ny 2 h=- - (21)
3wy’

where the angle brackets denote an average over all orienta-
tions with equal weight. and so, using Eq10) we obtain an expression for the mini-
This leads from Eq(12) to mum gap:
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25 We suggest that this concept of a lower critical volume
fraction ¢, may be of relevance to sudden shear thickening
in real colloids, with finite values of et number. D'Haene

20 - | [13], for example, finds that in controlled strain rate experi-
ments on hard-sphere systems, there is a discontinuous jump

15 © i in stress as a function of Pe, but only above a volume frac-
£ tion of 53—54 %. In the context of our model, this would
% correspond to the onset of a jammed state, with the formation
T 10 - . of system spanning clusters leading to the irregular stress

fluctuations he observes after the discontinuous thickening.
5| | Since the stress he observes does not grow arbitrarily, the
consequences of this putative logjam must be mitigated in
his experiments by some other effect such as particle defor-
0 . ' < mation or fracture.
5 10 15 20 25

VIIl. CLUSTERS IN THE SIMULATION

FIG. 6. Simulation, and theoretical curves-efn(h,,a) against
o107, for various ¢, with A\=2.1. The open symbols show fitted
theoretical result$Eq. (22)], and the closed symbols of the same
shape are the simulation data at the same volume fraction.

The computer simulations contain all the information
about the flow, and so can be used to visualize, and perform
statistics on any structures that may be present. In order to
define a cluster, we choose a criterion based upon interpar-
N2E(4,) T ticle gaps, which is that two particles belong to thg same
_ v [(1-T/Ty) 3— Hie'_ cluster if they are separated by a dafess than some critical

9C(¢,) wimod, ¢ 3 gaph,, for which we take a “theory-driven” value. In the

(22 context of this theory, we choose fbg a value dependent

. ) - . upon the expected gdp in a dimer forming at the start of
We may alsooven estimate the size of the initial minimum he flow. This is predicted to collapse like

gap hnin(0) (which will be highly sample dependerftom

hmin

hmin(o)

—In

2E(¢,) n

3 (23

coy

cog m/4)
Nimin(0) =~ hyyp. hy= htypexr{ ”,

The model thus predicts that the smallest gap will col- ) )

|apse Catastrophica”y' fa”|ng as qxp_ 'yjam)_s] near the in which the time dependence enters thI’Olﬂgfand we take
gel point. It is this singular dependence which makes com-
puter simulations of this regime extremely difficult. How- hg
ever, it also has a bearing on the self-consistency of the -
model, for the rods are only defined by a separation of length
scales, between gaps and particle diameters. A rapid C°”ap\°79nere/3 is some parameter of order unity.
of the gaps is therefore essential to this approximation. A simulation was run ai, =0.53, using 700 particles and

. F|gu_re 6 shows—lnhmin plotted against _the stress, for E(¢,) =125, and the configurations partitioned into clusters
simulations of 700 particles and the predicted curves SUPersH the basis of Eq23). From these partitions we may define
posed at various volume fractions. A value of 2.1 was use oments of the cluster sizes: L&} be the fraction of par-
for . ticles belonging to clusters of sieparticles, then we define

the gth momentM, by

(24)

VIl. LOWER CRITICAL VOLUME FRACTION

Our model predicts a lower volume fractiop, below M= P o
which the rods will tumbldgreachingd=0 andy=1) before T s

the gel transition occurgat T=Tg~0.33). Since the re-

duced timeT is related to the anglé the rods make with the Figure 7 shows plots a1, andM, averaged over vari-

gradient direction, byEgs.(2) and (4)] ous strain intervals, as a function of strainfor five values
of B. The error bars show the predicted values, using
1= 8. (b, In( 0089) ©;=0.13+0.02.
27 ) o1 costy ) Lastly, in order to obtain some pictorial impression of

these clusters, six configurations equally spaced in strain
with 6,= /4, it follows from Eqg.(15) and the fitted value were chosen from this simulation &t,=0.53 usingB=3.
of w, that ¢;=0.515+0.015. It should be noted, however, The clusters in the flow were then analyzed by finding for
that the error ong, is only in the context of the precise each the “radius of gyration” tensoR. This is defined in
model presented here; its value is quite sensitive to the ddhe following manner: Lek label each of theN particles
tailed assumptions made about, e.g., the form of the stred®longing to the cluster in turn. Lef be the position vector
[Eq. (13)]. of the kth particle and
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FIG. 7. (a) Plot of M, against strainy for the five valuesg FIG. 8. Plots of projections of the ellipsoids from E@&5) for
= 2.6, 3.0, 3.5, 4.0, 4.5. Each point in strain is actually an averagall the clusters in a configuration. Tick marks on the axes are at a
over four equally spaced configurations in one of the six strainspacing of one particle diameter. Configurations are(an-(f)
ranges, v=0-0.04, 0.04-0.08, 0.08-0.12, 0.12-0.16, y=0.04, 0.08, 0.12, 0.16, 0.20, and 0.24.

0.16—-0.20, and 0.26 0.24. The six error bars show the predicted . .
values of the momentM, for each strain range, using Mean of less than 0.02 particle diameters, and a standard

w,=0.13+0.02. (b) Same forM. deviation inqreasing from 0.33_0at v=0.08 to O:ZZ.at
v=0.24, entirely consistent with the clusters lying in the
flow-gradient plane.

l'c.m.:§: N
k IX. CONCLUSION
the center of mass of the cluster. Then In this paper we have constructed a model of the stress
carrying “fabric” in a concentrated dispersion of hard
_z (re=rem)(Me—rem) spheres at Pe«. The model predicts that above a lower
R= 7 N : volume fraction¢, substantially less than 0.63, a hydrody-

namic logjam occurs even in an infinite system. This is char-
This tensor defines an ellipsoid approximating the cluster§cterized by an elongated cluster or rod, first forming parallel
true distribution in space. To project this ellipsoid onto theto the compression axis, growing to infinite size before it
flow-gradient plane, let the, y, andz axes be the flow, tumbles by passing=0 and entering a region of extensional
gradient, and vorticity directions, then define a new 2 by 2flow. The model quantifies the hitherto qualitative notion of
tensorRp, by the upper left hand corner &. The projec- hydrodynamic clustering and jamming, which we believe to

tion onto the plang=0 is then the set of poinfs} given by ~ be a new physical phenomenon underlying discontinuous
shear thickening.
x=7RY%\ (25) At volume fractions belowp,, the clusters in the model
ph . . o . g
will tumble, passingd=0 and failing to jam at a “first at-
wheren is a vector lying on the unit circle in the plane tempt.” The assumptlon that all clusters n the flow remain
720, roughly parallel will then break down, as it is closely tied to
the transience of the motion. Whether a steady state is then

These projections are plotted for the chosen configura . i .
tions in Fig. 8, and clearly show narrow “rods” near the eventually achieved is not covered by our model and remains

“compression” axis @= m/4). However, since Fig. 8 sup- an open question. It is therefore unclear whether for a pure
presses all information about the “vorticity” direction, one hydrodynamic model a divergence such as Bq.can be

may wonder how good is the approximation that the rods arétuo|IeOI belows, .
confined to thez=0 plane. This was tested, by calculating

the average value, and standard deviation of the vector rep-

resenting the principal axis of each ellipsoid. We find that Thanks are due to Dr. C. Nex, for his help and advice on
this vector has a component in the vorticity direction with aPadeapproximants.
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